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Abstract—We consider the use of generalized Ding-Helleseth cy-
clotomy to design sequences over the finite field of order four. Using
generalized cyclotomic classes of order four we obtain the family
of balanced sequences of odd period with high linear complexity.
Also we present a method of constructing sequences with high linear
complexity and arbitrary even period over the finite field of order
four. These sequences are obtained with generalized Ding-Helleseth
cyclotomy of order two . We generalize design of the sequences over
the finite field of order four proposed by P. Ke et al. and D. Li et al.

Keywords—Linear complexity, finite field, sequences

I. INTRODUCTION

FOR cryptographic applications, the linear complexity (L)
of a sequence is an important merit factor [10], [2]. It

may be defined as the length of the shortest linear feedback
shift register that is capable of generating the sequence. The
feedback function of this shift register can be deduced from
the knowledge of just 2L consecutive digits of the sequence.
Thus, it is reasonable to suggest that ”good” sequences have
L > N/2 (where N denotes the period of the sequence)[14].

Using classical cyclotomic classes and generalized cyclo-
tomic classes to construct binary sequences which are called
classical cyclotomic sequences and generalized cyclotomic
sequences respectively, is an important method for sequence
design [2]. A generalized cyclotomy with respect to pq was
introduced by Whiteman [16]. However, his generalized cy-
clotomy is not consistent with classical cyclotomy. In their
paper [3] C. Ding and T. Helleseth first introduced a new
generalized cyclotomy of order 2 with respect to pe11 . . . pett ,
which includes classical cyclotomy as a special case and they
show how to construct binary sequences based on this new
generalized cyclotomy. A unified approach for the generalized
cyclotomy over the residue classes ring was presented in [9].
There are many works devoted to use of Ding-Helleseth cyclo-
tomy or Whiteman cyclotomy to construct binary sequences.
While, there are scattered results of generalized cyclotomic
quaternary sequences over the finite field of order four F4

with high linear complexity.
In particular, the sequences of periods

2p, 2pn, pq, 2pq, 2pm+1qn+1 with high linear complexity
were studied in [4], [12], [8], [1], [15] (see also references
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therein). The generalized Whiteman cyclotomy or Ding-
Helleseth cyclotomy are used in these papers for design
sequences. Authors of the above-mentioned article refer to
these sequences as quaternary. At the same time, the number
of researches believe that this name can only be used for
sequences with terms 0, 1, 2, 4 (±i,±1). Also using the Gray
map for these sequences we may easily obtain sequences
over F4 and vice versa. For the application of sequences over
the finite field, see [13], for instance.

In this paper, first we consider using Ding-Helleseth cy-
clotomy of order four to design sequences over F4 with odd
periods and high linear complexity. Secondary, we propose a
method of constructing sequences over F4 with high linear
complexity and arbitrary even period. These sequences are
obtained using generalized Ding-Helleseth cyclotomy of order
two [3]. In particular, we generalize the result of [4], [12]
and present other method of designing sequences with periods
pq, 2pm+1qn+1. These results were partially presented at the
conference [7].

The rest of the paper is structured as follows. In Section II,
we consider the case when a period of sequence N is an odd
number. In Section III, we consider the design of sequences
over the finite fields of order four with an even period. Finally,
we conclude the paper with some remarks.

II. DESIGN SEQUENCES WITH ODD PERIODS

In this section we consider the case when a period of
sequence N is an odd number and N = pe11 · · · p

et
t , pi ≡

1(mod 4), i = 1, . . . , t, where p1, ..., pt are pairwise distinct
odd primes. It is well known that there exists a primitive root
gi modulo peti [11]. In what follows we suppose D

(p
ei
i )

0 =
{gi4j |j ∈ Z} be the subgroup of Z∗

p
ei
i

, generated by g4i , and

D
(p

ei
i )

k = gkiD
(p

ei
i )

0 ; k = 1, 2, 3, where the arithmetic is that of
Zpeii

, i = 1, 2, ..., t, i.e. we will use Ding-Helleseth generalized
cyclotomic classes of order four.

Let G(p
ei
i )

k =
⋃ei−1
l=0 pliD

(p
ei
i )

k . Then as in [3] we have a
partition

Zpeii
=

3⋃
j=0

G
(p

ei
i )

k ∪ {0}.

According to the Chinese Remainder Theorem

Zn ∼= Zpe11 × ...× Zpett
relatively to isomorphism φ(x) = (x mod pe11 , ..., x mod
pett ) [11]. Here and hereafter x mod n denotes the least
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nonnegative integer that is congruent to x modulo n. Below,
we will use the denotation φ−1(x) for all of values t.

By definition, put N1 = N,Nj+1 = N/pe11 · · · p
ej
j ; j =

2, . . . , t (here Nt+1 = 1) and

Ck = φ−1
(
G

(p
e1
1 )

k × ZN2
∪ {0} ×G(p

e2
2 )

k × ZN3
∪ . . .

∪ {0} × · · · × {0} ×G(p
et−1
t−1 )

k × ZNt

∪ {0} × · · · × {0} ×G(p
et
t )

k

)
; k = 0, 1, 2, 3.

By definition, sets Ck are dependent on the order of factors in
the expansion N . From our definitions it follows that ZN =
∪3i=0Ck ∪ {0}.

Let F4 = {0, 1, µ, µ+ 1} be a finite field of order four. We
consider a sequence {si} defined by

si =


0, if i ∈ C0 ∪ {0},
1, if i ∈ C1,

µ, if i ∈ C2,

µ+ 1, if i ∈ C3.

(1)

The sequence defined by (1) is balanced. Further, we derive the
linear complexity of this sequence. Before we give the main
result of this section, we establish the following lemmas.

A. Subsidiary lemmas
It is well known that if {si} is a sequence of period N ,

then the minimal polynomial m(x) and the linear complexity
L of this sequence is defined by

m(x) = (xN − 1)/ gcd
(
xN − 1, S(x)

)
,

L = N − deg gcd
(
xN − 1, S(x)

)
, (2)

where S(x) = s0 + s1x+ ...+ sN−1x
N−1.

Let α be a primitive N th root of unity in the extension
of F4. Then, according to (2), in order to find the minimal
polynomial and the linear complexity of {si} it is sufficient
to find the zeros of S(x) in the set {αv, v = 0, 1, . . . , N −1}.

In this subsection we investigated the values S(αv). By
(1), to compute these values it is sufficient to find

∑
i∈Ck

αvi.

Suppose F1 = φ−1
(
G

(p
e1
1 )

0 ×ZN2

)
and Fj = φ−1

(
{0}×· · ·×

{0}×G(p
ej
j )

0 ×ZNj+1

)
; j = 2, . . . , t; then C0 = ∪tj=1Fj . First

of all, we derive
∑
i∈Fj

αvi.

Let βk = αN/Nk , k = 1, . . . , t. Then βk is a primitive Nkth
root of unity in the extension of F4.

Lemma 1: If v 6≡ 0(mod Nk) then
∑

i∈ZNk

βvik = 0 for k =

1, 2, . . . , t.
Proof: By definition, βvNk

k = 1. Then 0 = βvNk

k − 1 =

(βvk − 1)(1 + βvk + · · ·+ β
v(Nk−1)
k ). To conclude the proof, it

remains to note that βvk − 1 6= 0.
Lemma 2: If v 6≡ 0(mod Nk+1) for k = 1, . . . , t− 1 then∑
i∈φ−1

(
G

(p
ek
k

)

0 ×ZNk+1

) βvik = 0.

Proof: We have that∑
i∈φ−1

(
G

(p
ek
k

)

0 ×ZNk+1

)βvik =
∑

a∈G
(p

ek
k

)

0

∑
i∈φ−1

(
{a}×ZNk+1

)βvik .

Let us show that
∑
i∈φ−1

(
{a}×ZNk+1

) βvik = 0 for 1 ≤ a <
pekk . We have∑
i∈φ−1

(
{a}×ZNk+1

)βvik = βvak
∑

i∈φ−1
(
{a}×ZNk+1

)βv(i−a)k (3)

Since i ∈ φ−1
(
{a} × ZNk+1

)
, we see that i − a = pekk f

and gcd(pekk , Nk+1) = 1. From this we can establish that
β
v(i−a)
k = βvfk+1 or∑

i∈φ−1
(
{a}×ZNk+1

)βv(i−a)k =
∑

f∈ZNk+1

βvfk+1.

The conclusion of this lemma then follows from (3) and
Lemma 1.
It is worth pointing out that Lemma 2 is false for k = t.

Corollary 3: Under the conditions of Lemma 2 we have∑
i∈φ−1

(
G

(p
ej
j

)

0 ×ZNj+1

) βvij = 0 for j = 1, . . . , k.

Lemma 4: If v 6≡ 0( mod Nk+1) then
∑
i∈Fj

αvi = 0 for j =

1, . . . , k.
Proof: If j = 1 then the assertion of Lemma 4 is

equivalent to the statement of Lemma 2.
Let j ≥ 2. For all i such that i ∈ Fj we have i ≡ 0(mod

pe11 . . . p
ej−1

j−1 ). Therefore, since αp
e1
1 ...p

ej−1
j−1 = βj , Fj mod

Nj+1 = ZNj+1
and Fj mod p

ej
j = G

(pej )
0 , by Corollary 3

we obtain that
∑
i∈Fj

αvi =
∑
i∈φ−1

(
G

(p
ej
j

)

0 ×ZNj+1

) βvij = 0.

Lemma 4 defines the values
∑
i∈Fj

αvi = 0 for v 6≡ 0(mod

Nk+1). Let as study the case when v ≡ 0(mod Nk+1). We
can see from the proof of Lemma 4 that in this case the sums∑
i∈G

(p
ej
j

)

0

αvi need an investigation. In the special case when

N = pe these sums were studied in [5].
Now, we briefly repeat the result from [5]. Let αi = αN/p

ei
i .

Then αi is a primitive peii th root of unity in the exten-
sion of F4. Introduce the subsidiary polynomials Tj(x) =∑
i∈D

(p
ej
j

)

0 mod p

xi, and let γj = α
p
ej−1

j

j , j = 1, . . . , t.

Suppose c ∈ pfjD
(p

ej
j )

l ; then by [5] we have∑
i∈G

(p
ej
j

)

0

αcij = Tj(γ
glj
j ) + f(pj − 1)/4. (4)

Lemma 5: Let v ≡ 0(mod Nk+1), v 6≡ 0(mod Nk), and
v
(
N/pekk

)−1
mod pekk ∈ pfkD

(p
ek
k )

l where
(
N/pekk

)−1
is an

inverse element N/pekk modulo pekk . Then

∑
i∈C0

αvi = Tk(γ
glk
k ) + f(pk − 1)/4 +

t∑
j=k+1

(peuu − 1)/4

for k = 1, . . . , t.
Proof: By definition

∑
i∈C0

αvi =
∑t
j=1

∑
i∈Fj

αvi.
Since v 6≡ 0(mod Nk), by Lemma 4 it follows that∑
i∈Fj

αvi = 0 for j = 1, . . . , k − 1.
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Further, if i ∈ Fj and j > k then i ≡ 0(mod pe11 . . . pekk )
and vi ≡ 0(mod N). So, in this case αvi = 1 and∑
i∈Fj

αvi ≡ (pej − 1)/4(mod 2).
Now, we study the latest sum

∑
i∈Fk

αvi. Under the
conditions that i ≡ 0(mod pe11 . . . p

ek−1

k−1 ) and v ≡ 0(mod
Nk+1), we obtain vi ≡ 0(mod N/pekk ). From this we

can establish that αvi = α
vi
(
N/p

ek
k

)−1
mod p

ek
k

k . Since

Fk mod pekk = G
(p

ek
k )

0 , it follows that
∑
i∈Fk

αvi =

|Zk+1|
∑
j∈G

(p
ek
k

)

0

α
vi
(
N/p

ek
k

)−1

k . Combining this with (4), we

get the assertion of Lemma 5.
Corollary 6: Under the conditions of Lemma 5 the follow-

ing relation holds
∑
i∈Cm

αvi = Tk(γ
gl+m
k

k ) + f(pk − 1)/4 +∑t
u=k+1(peuu − 1)/4.

B. The linear complexity of sequence

In this subsection we derive the linear complexity and the
minimal polynomial of {si}. The values Tk(γ

glk
k ) were studied

in [6]. We write these values omitting index k.
If p ≡ 1(mod 4) then p has a quadratic partition of

the form p = x2 + 4y2. Here x, y are an integers and
x ≡ 1(mod 4). In [6] the values of the polynomial T (x)
are computed depending on x, y. Without breaking the in-
tegrity we can presume that T (γ) 6= 0 and let T(x) =(
T (x), T (xg), T (xg

2

), T (xg
3

)
)
. Then, by [6] we have:

(i) T(γ) =
(
ζ, ζ2, ζ4, ζ8

)
or T(γ) =

(
ζ, ζ8, ζ4, ζ2

)
, if y ≡

1( mod 2), where ζ satisfied a relation ζ4+ζ3+ζ2+ζ+1 = 0
or ζ4 + ζ3 + 1 = 0;

(ii) T(γ) = (1, 0, 0, 0), if x ≡ 1(mod 8), y ≡ 0(mod 4);
(iii) T(γ) = (1, 1, 0, 1), if x ≡ 5(mod 8), y ≡ 0(mod 4);
(iv) T(γ) = (µ, 1, µ + 1, 1), if x ≡ 1(mod 8), y ≡ 2(mod

4). Here µ satisfies µ2 = 1 + µ;
(v) T(γ) = (µ, 0, µ + 1, 0), if x ≡ 5(mod 8), y ≡ 2(mod

4).
Let

∆k =

{
0, if pk ≡ 5(mod 8),

(pekk − 1)/4, if pk ≡ 1(mod 8).

For pk ≡ 1(mod 8) we take nk = δk + indgkN/p
ek
k where

δk =


0, if xk ≡ 1(mod 8), yk ≡ 0(mod 4),

1, if xk ≡ 1(mod 8), yk ≡ 2(mod 4),

2, if xk ≡ 5(mod 8), yk ≡ 0(mod 4),

3, if xk ≡ 5(mod 8), yk ≡ 2(mod 4).

Put, by definition mk(x) = 1 if pk ≡ 5(mod 8) and
mk(x) =

∏
i∈Cnk

(x− αik)N/Nk if pk ≡ 1(mod 8).
Our main statement in this section is the following.
Theorem 7: Let {si} be defined by (1). Then

L = N − 1 −
∑t
k=1 ∆kN/Nk and m(x) =

(xN − 1)/
(

(x− 1)
∏t
k=1mk(x)

)
.

Proof: By (1) S(1) = (N − 1)/4 + µ(N − 1)/4 + (µ+
1)(N − 1)/4 = 0. Suppose 1 ≤ v ≤ N − 1, v ≡ 0(mod
Nk+1), and v 6≡ 0(mod Nk), k = 1, . . . , t. (k = t,Nt+1 =
1).

By definition S(αv) =
∑
i∈C1

αvi + µ
∑
i∈C2

αvi + (µ +
1)
∑
i∈C3

αvi. Using Lemma 5 and Corollary 6 we obtain that

S(αv) = Tk(γ
gl+1
k

k ) + µTk(γ
gl+2
k

k ) + (µ+ 1)Tk(γ
gl+3
k

k ) (5)

where l : v
(
N/pekk

)−1
mod pekk ∈ p

f
kD

(p
ek
k )

l .
By (5) from above-mentioned formulas for T (γ) we ob-

tain that S(αv) 6= 0 if p ≡ 5(mod 8); S(αv) = 0 if
p ≡ 1(mod 8) and v

(
N/pekk

)−1
mod pekk ∈ G

(p
ek
k )

δk
. In the

latest case v mod pekk ∈ G
(p

ek
k )

nk . To conclude the proof it

remains to note that |{v : v mod pekk ∈ G
(p

ek
k )

nk , v ≡
0(mod Nk+1), and v 6≡ 0(mod Nk)}| = N/Nk(pekk − 1)/4.

Corollary 8: Let {si} be defined by (1) for N = pe . Then

L =

{
N − 1, if p ≡ 5(mod 8),

3(N − 1)/4, if p ≡ 1(mod 8).
.

Corollary 9: Under the conditions of Theorem 7 we have
L ≥ 3(N − 1)/4.
The results of computing the linear complexity by Berlekamp-
Massey algorithm when N = p1p2, N = p21p2 or N = p1p

2
2

for p1 = 5, 13, . . . , 29, p2 = 13, 17, . . . , 37 and for other
values of N confirm the results of this section.

So, sequences defined by (1) have high linear complexity for
all values of the period. Since by the definition the sequence
depends on the order of factors in the expansion of the period,
it follows that for one N we can construct a few sequences
with various values of the linear complexity if exists i such
that pi ≡ 1(mod 8). For example, let N = 1105. Then:
L = 844 if p1 = 5, p2 = 13, p3 = 17;
L = 1084 if p1 = 5, p2 = 17, p3 = 13;
L = 1100 if p1 = 17, p2 = 5, p3 = 13;
L = 1052 if p1 = 13, p2 = 17, p3 = 5.
This method may also be used when pi ≡ 3(mod 4). Here

we can take the generalized cyclotomic classes of order 2
for pairs of elements from F4 by turns. But, in this case the
sequences will have very bad balanced properties. In order to
eliminate this drawback, in the following section we consider
sequences of an even period.

III. DESIGN SEQUENCES OF EVEN PERIODS

In this section we consider the design sequences over the
finite fields of order four with an even period. First we build a
partition of residue classes ring ZN . Let N be an even integer
and N = 2mn, where gcd(n, 2) = 1. Then n = pe11 · · · p

et
t ,

when p1, ..., pt are pairwise distinct odd primes. In this case
we can use Ding-Helleseth generalized cyclotomic classes.

Let {C0, C1} be generalized cyclotomic classes of order
two with respect Zn, where Zn is a ring of residue classes
modulo n [3]. Then {C0, C1} is a partition of Zn \ {0}, i.e.
Zn = C0 ∪ C1 ∪ {0} and C0 ∩ C1 = ∅.

Using Ding-Helleseth cyclotomy, we obtain a partition of
ZN . The ring of residue classes Z2mn

∼= Z2m × Zn relative
to isomorphism φ(x) = (x mod 2m, x mod n). Put, by
definition

Hj,i = φ−1 ({j} × Ci) , j = 0, . . . , 2m − 1; i = 0, 1.
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Here we have a partition

ZN = {0, n, . . . , (2m − 1)n} ∪
2m−1⋃
j=0

Hj,0 ∪Hj,1,

Hj,i ∩Hl,k = ∅ for all j 6= l, i 6= k.

In the following subsection we construct sequences with
high linear complexity using this partition. The number of
classes in this partition is always divisible by four.

A. The design of sequences with high linear complexity

As earlier, let F4 = {0, 1, µ, µ + 1} be a finite field
of order four. By assigning the elements of F4 to each of
generalized cyclotomic classes with respect to ZN , one obtains
a quaternary sequence of length N naturally. However, in order
to guarantee that the constructed sequences have high linear
complexity, one should do it specially.

In our case N = 2mn, hence over F4 we have

L = N − deg gcd
(

(xn − 1)2
m

, S(x)
)
. (6)

Let β be a primitive nth root of unity in the extension of
F4. Then, according to (6), in order to find the minimal
polynomial and the linear complexity of {si} it is sufficient
to find the zeros of S(x) in the set {βv, v = 0, 1, . . . , n− 1}
and determine their multiplicity. In order to investigate the
values of S(βv), let us introduce subsidiary polynomials. Let
SA(x) =

∑
i∈A

xi, where A is a subset of Zn or ZN .

Lemma 10: If 1 ≤ v ≤ n−1 then SC0(αv)+SC1(αv) = 1.

Proof: From our definition it follows that SC0
(αv) +

SC1
(αv) =

∑n−1
i=1 α

vi.
Lemma 11: If 0 ≤ v ≤ n− 1 then SHj,i

(αv) = SCi
(αv).

Proof: By definitions SHj,i
(αv) =

∑
i∈Hj,i

αvi and
Hj,i mod p = Ci. This completes the proof of Lemma 11.

1) The sequences with a period 2n: Let a, b, c, d belong to
F4 and a, b, c, d are pairwise distinct. We construct a sequence
with the first 2n terms of sequence {si} defined as

si =



0, if i = 0,

a, if i ∈ H0,0,

b, if i ∈ H0,1,

c, if i ∈ H1,0,

d, if i ∈ H1,1,

e, if i = n.

(7)

for e 6= c + d. The sequence defined by (7) is balanced for
e 6= 0.

Remark 12: If n = pk then this sequence equals the
sequence from [12] for p ≡ ±1(mod8) and when replacing
{c, d} with {d, c} for p ≡ ±3(mod8).

Theorem 13: Let {si} be defined by (7) for e 6= c + d ∈
F4, e 6= 0. Then L = N and m(x) = xN − 1.

Proof: Let us show that S(βv) 6= 0 for v = 0, 1, . . . , n−1.
By (7) we have

S(x) = exN + a
∑
i∈H0,0

xi + b
∑
i∈H0,1

xi+

c
∑
i∈H1,0

xi + d
∑
i∈H1,1

xi.

Let 1 ≤ v ≤ n− 1. By Lemma 11 we obtain

S(βv) = e+aSC0
(βv)+bSC1

(βv)+cSC0
(βv)+dSC1

(βv)

or by Lemma 10 S(βv) = e+ (a+ b+ c+d)SC0(βv) + b+d.
By definition a+ b+ c+ d = 0 + 1 + µ+ µ2 = 0. Thus, the
above expression is equivalent to following S(βv) = e+b+d.
So, S(βv) 6= 0, 1 ≤ v ≤ n− 1.

To conclude the proof, it remains to note that S(1) = e +
(a+ b+ c+ d)(n− 1)/2.
In conclusion of the subsection we say a couple of words about
the case when e = b+d. Here βvS

′
(βv) = b+(a+b)SC0(βv).

So, in general case when n 6= pk it is possible that |S′(βv) =
0, 1 ≤ v ≤ n − 1| > (n − 1)/2, i.e., L can be less than
(n+ 3)/2 ( L ≥ (n+ 3)/2 for n = pk [12]).

2) The sequences with a period 4n: Let as earlier, a, b, c, d
be a permutation of the elements of F4. We consider a
sequence {si} defined by

si =


a, if i ∈ H0,0 ∪H1,0 ∪ {0},
b, if i ∈ H2,0 ∪H0,1 ∪ {n},
c, if i ∈ H3,0 ∪H1,1 ∪ {2n},
d, if i ∈ H2,1 ∪H3,1 ∪ {3n}.

(8)

The sequence defined by (4) is balanced.
Theorem 14: Let {si} be defined by (8). Then L = N − 1

and m(x) = (xN − 1)/(x− 1).
Proof: Similarly as in Theorem 13, by Lemmas 10 and

11 we obtain S(βv) = b + c. Hence, S(βv) 6= 0 for v =
0, 1, . . . , n−1. By definition S(1) = (a+b+c+d)(n+1) = 0.

Further, xS
′
(x) = a

∑
i∈H1,0

xi + bxn + c
∑
i∈H3,0

xi +

c
∑
i∈H1,1

xi+d
∑
i∈H3,1

xi+dx3n. So, S
′
(1) = (a+d)(n−

1)/2 + b+ d, i.e. S
′
(1) 6= 0.

3) The general construction: Let j1, j2, j3, j4 be pairwise
distinct integers between 0 and 2m − 1. We consider a
subsidiary subsequence {ti} defined as

ti =



a, if i ∈ Hj1,0 ∪Hj2,1 ∪ {j1n},
b, if i ∈ Hj2,0 ∪Hj3,1 ∪ {j2n},
c, if i ∈ Hj3,0 ∪Hj4,1 ∪ {j3n},
d, if i ∈ Hj4,0 ∪Hj0,1 ∪ {j4n},
0, otherwise.

(9)

Put, by definition Ft(x) =
∑N−1
l=0 tlx

l.
Lemma 15: If 0 ≤ v ≤ n− 1 then Ft(αv) = 0.

Lemma 15 may be proved similarly as Theorem 13.
Now we will give a general definition of sequence with

a period N = 2mn,m > 2. If m > 2 then we can
take the partition {4, . . . , 2m − 1} = ∪2

m−2−1
k=1 I(k), where

I(k) = (j
(k)
1 , j

(k)
2 , j

(k)
3 , j

(k)
4 ) and {j(k)l }, l = 1, 2, 3, 4; k =
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1, . . . , 2m−2 − 1 are pairwise distinct integers of the same
parity between 4 and 2m − 1. Put, by definition

u = s+
2m−2−1∑
k=1

t(k) (10)

where s is defined by (8) and t(k) is defined by (9) for
I(k) = (j

(k)
1 , j

(k)
2 , j

(k)
3 , j

(k)
4 ). By Theorem 14 and Lemma 15

we obtain the following statement.
Theorem 16: Let {ui} be defined by (10). Then L = N−1

and m(x) = (xN − 1)/(x− 1).

IV. CONCLUSION

In this paper, we consider using Ding-Helleseth cyclotomy
to design sequences over the finite field of order four with high
linear complexity. We propose a method of constructing se-
quences with high linear complexity and arbitrary even period.
These sequences are obtained by means of generalized Ding-
Helleseth cyclotomy of order two. Also, using Ding-Helleseth
cyclotomy of order four we construct balanced sequences over
F4 with high linear complexity for series of odd periods. A
problem of designing balanced sequences over the finite field
of order four with high linear complexity and any odd period
remains unsolved. The sequences with high linear complexity
are significant for cryptographic applications.

We generalize design of the sequences over the finite field of
order four proposed by Ke et al.[12]. Our method of designing
sequences is different from the one proposed in the papers [4],
[1], [15].
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